

## Intro GGT

## Exercises 1

**Exercise 1.** Let  $K$  be a field. Consider the action of  $\mathrm{GL}_n(K)$  on the vector space  $K^n$  of column vectors.

1. Show that this action has exactly two orbits.
2. Determine the stabilizer of the vector

$$\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

3. Show that this stabilizer surjects onto  $\mathrm{GL}_{n-1}(K)$ , and that the kernel of this surjection is isomorphic to  $K^{n-1}$ .
4. Deduce that if  $K$  is a finite field with  $q$  elements, then

$$|\mathrm{GL}_n(K)| = (q^n - 1)q^{n-1}|\mathrm{GL}_{n-1}(K)|.$$

5. Compute explicitly the cardinality of  $\mathrm{GL}_n(K)$  when  $K$  is a finite field.

**Exercise 2 (Cube).** Consider a cube, for instance the convex hull in  $\mathbb{R}^3$  of the points  $(\pm 1, \pm 1, \pm 1)$ . Let  $G$  be the subgroup of  $O(3)$  preserving this cube.

1. Given two adjacent vertices  $A, B$ , show that there exists an element of  $G$  sending  $A$  to  $B$ . Deduce that  $G$  acts transitively on the vertices and that  $|G|$  is divisible by 8.
2. Given two adjacent edges  $U, V$ , show that there exists an element of  $G$  sending  $U$  to  $V$ . Deduce that  $G$  acts transitively on edges, and even on oriented edges. Deduce that  $|G|$  is a multiple of 24.
3. Show that the stabilizer of an oriented edge is the reflection across the plane containing it, and deduce that  $|G| = 48$ .
4. Show that the center of  $G$  is  $Z(G) = \{\pm \mathrm{id}\}$ , and that  $G$  decomposes as

$$G = G^+ \times \{\pm \mathrm{Id}\}.$$

5. Show that  $G^+ = G \cap \mathrm{SO}(3)$  has 24 elements.
6. Consider the 4 long diagonals of the cube. Show that  $G^+$  acts transitively on this set, and deduce an isomorphism  $G^+ \simeq S_4$ .

**Exercise 3 (Hausdorff distance).** Let  $(X, d)$  be a metric space. For a nonempty subset  $A \subset X$ , define

$$d(x, A) := \inf_{a \in A} d(x, a).$$

Denote by  $\mathcal{B}(X)$  the set of *nonempty closed bounded subsets* of  $X$ . For  $A, B \in \mathcal{B}(X)$ , define the Hausdorff distance

$$d_H(A, B) := \max \left\{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A) \right\}.$$

We will prove that  $(\mathcal{B}(X), d_H)$  is a metric space.

1. Show that if  $A$  is bounded, then  $\sup_{a \in A} d(a, B)$  is finite.

2. Give an example of two subsets  $A, B \subset \mathbb{R}$ , possibly unbounded, such that  $d_H(A, B)$  is infinite.

Explain why the assumption of boundedness is necessary.

3. Show that for all  $x \in X$  and all subsets  $A \subset X$ ,  $d(x, A) = 0$  if and only if  $x \in \overline{A}$ .

4. Prove that for  $A, B \in \mathcal{B}(X)$ ,  $d_H(A, B) = 0$  if and only if  $A = B$ .

5. Give an example of two bounded subsets  $A, B \subset \mathbb{R}$ , possibly not closed, such that

$$d_H(A, B) = 0 \quad \text{but } A \neq B.$$

Explain why the assumption of closedness is necessary.

6. Show that for all nonempty subsets  $A, B, C \subset X$  and all  $a \in A$ ,

$$d(a, C) \leq d(a, B) + \sup_{b \in B} d(b, C).$$

*Hint: Fix  $\varepsilon > 0$  and choose  $b \in B$  and  $c \in C$  such that*

$$d(a, b) \leq d(a, B) + \varepsilon \quad \text{and} \quad d(b, c) \leq d(b, C) + \varepsilon.$$

7. Show that

$$\sup_{a \in A} d(a, C) \leq \sup_{a \in A} d(a, B) + \sup_{b \in B} d(b, C).$$

8. Conclude that for all nonempty closed bounded subsets  $A, B, C \subset X$ ,

$$d_H(A, C) \leq d_H(A, B) + d_H(B, C).$$

9. Conclude that  $(\mathcal{B}(X), d_H)$  is a metric space.

**Exercise 4** (Cayley graphs and direct products). Let  $\Gamma_1 = (V_1, E_1)$  and  $\Gamma_2 = (V_2, E_2)$  be graphs. The *Cartesian product*  $\Gamma_1 \times \Gamma_2$  is the graph with  $V_1 \times V_2$  as the set of vertices, and  $\{(v_1, v_2), (v'_1, v'_2)\}$  is an edge if and only if either

- $v_1 = v'_1$  and  $\{v_2, v'_2\} \in E_2$ , or
- $v_2 = v'_2$  and  $\{v_1, v'_1\} \in E_1$ .

1. Show that  $\Gamma_1 \times \Gamma_2$  is connected if and only if both  $\Gamma_1$  and  $\Gamma_2$  are connected.

2. Show that the graph distance in  $\Gamma_1 \times \Gamma_2$  satisfies

$$d_{\Gamma_1 \times \Gamma_2}((v_1, v_2), (v'_1, v'_2)) = d_{\Gamma_1}(v_1, v'_1) + d_{\Gamma_2}(v_2, v'_2).$$

3. Let  $G, H$  be groups with finite generating sets  $S_G$  and  $S_H$  respectively. Show that  $S := (S_G \times \{e_H\}) \cup (\{e_G\} \times S_H)$  is a generating set of  $G \times H$ .

4. Construct an explicit graph isomorphism

$$\text{Cay}(G \times H, S) \longrightarrow \text{Cay}(G, S_G) \times \text{Cay}(H, S_H).$$

5. Deduce that for all  $(g, h), (g', h') \in G \times H$ ,

$$d_S((g, h), (g', h')) = d_{S_G}(g, g') + d_{S_H}(h, h').$$

6. Apply this to draw a Cayley graph of  $\mathbb{Z} \times D_n$ , with a generating set of your choice.

7. Apply this to draw a Cayley graph of  $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$ , with a generating set of your choice.