Intro GGT Exercises 1

Exercise 1. Let K be a field. Consider the action of GL,, (K') on the vector space K" of column vectors.
1. Show that this action has exactly two orbits.

2. Determine the stabilizer of the vector

0
3. Show that this stabilizer surjects onto GL,,_1 (K ), and that the kernel of this surjection is isomor-
phic to K"~ 1,

4. Deduce that if K is a finite field with ¢ elements, then

|GLa(K)| = (¢" = 1)¢" ! |GLyp—1 (K)].

5. Compute explicitly the cardinality of GL,,(K) when K is a finite field.

Exercise 2 (Cube). Consider a cube, for instance the convex hull in R? of the points (1, +1, +1). Let
G be the subgroup of O(3) preserving this cube.

1. Given two adjacent vertices A, B, show that there exists an element of G sending A to B. Deduce
that G acts transitively on the vertices and that |G| is divisible by 8.

2. Given two adjacent edges U, V, show that there exists an element of G sending U to V. Deduce
that G acts transitively on edges, and even on oriented edges. Deduce that |G| is a multiple of 24.

3. Show that the stabilizer of an oriented edge is the reflection across the plane containing it, and
deduce that |G| = 48.

4. Show that the center of G is Z(G) = {+id}, and that G decomposes as

G =G x {+Id}.

5. Show that G = G N SO(3) has 24 elements.

6. Consider the 4 long diagonals of the cube. Show that G™ acts transitively on this set, and deduce
an isomorphism G+ ~ Sj.

Exercise 3 (Hausdorff distance). Let (X, d) be a metric space. For a nonempty subset A C X, define

d(z, A) = grelgd(x,a).

Denote by B(X) the set of nonempty closed bounded subsets of X. For A,B € B(X), define the
Hausdorff distance

dy (A, B) := max { sggd(a, B), ls)gg d(b, A)}

We will prove that (B(X), dy) is a metric space.

1. Show that if A is bounded, then sup,¢ 4 d(a, B) is finite.



2. Give an example of two subsets A, B C R, possibly unbounded, such that dy; (A, B) is infinite.

Explain why the assumption of boundedness is necessary.
3. Show that for all 2 € X and all subsets A C X, d(x, A) = 0 if and only if 2 € A.
4. Prove that for A, B € B(X), dy (A, B) =0inand only if A = B.
5. Give an example of two bounded subsets A, B C R, possibly not closed, such that

dg(A,B)=0 butA+#B.

Explain why the assumption of closedness is necessary.

6. Show that for all nonempty subsets A, B,C' C X and all a € A,
d(a,C) < d(a, B) +supd(b, C).
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Hint: Fix £ > 0 and choose b € B and c € C such that

d(a,b) < d(a,B)+e and d(b,c) <d(b,C)+ez.

7. Show that

supd(a,C) < supd(a, B) 4+ supd(b, C).
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8. Conclude that for all nonempty closed bounded subsets A, B,C C X,
dr(A,C) < du(A,B) 4+ du(B,C).

9. Conclude that (B(X), dy;) is a metric space.

Exercise 4 (Cayley graphs and direct products). Let 'y = (V4, E1) and T'y = (Va, F») be graphs. The
Cartesian product I'y x T’y is the graph with V; x V3 as the set of vertices, and {(v1, v2), (v}, v5)} is an
edge if and only if either

e v; = v} and {vg, vy} € E», or

e vy = vh and {v1,v]} € Ej.

1. Show that I'y x I'y is connected if and only if both I"; and I'y are connected.
2. Show that the graph distance in I'; x I'9 satisfies

dp, xr, ((01,02), (v1,v3)) = dp, (v1,0]) 4 dp, (v2, vh).

3. Let G, H be groups with finite generating sets S and Sy respectively. Show that S := (Sg x
{eg}) U ({eg} x Sg) is a generating set of G x H.

4. Construct an explicit graph isomorphism
Cay(G x H,S) — Cay(G, S¢g) x Cay(H, Sg).
5. Deduce that for all (¢, k), (¢', 1) € G x H,
ds((g.h), (', 1)) = ds(9.9') + sy (h. ).
6. Apply this to draw a Cayley graph of Z x D,,, with a generating set of your choice.
7. Apply this to draw a Cayley graph of Z/3Z x Z/3Z, with a generating set of your choice.



